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Abstract 

A systematic investigation of the effect of phase errors 
of different types on E maps is presented. Both random 
and systematic errors have been considered with 
distributions depending in different ways on the 
resolution of the data. Considerably large random 
errors can be tolerated without great loss of structural 
information in the E maps, while smaller systematic 
errors have greater destructive effects. These effects are 
explained by the introduction and analysis of a 
phase-error function. 

Introduction 

The final outcome of any direct-methods procedure is a 
set of approximate phases with which an E map is 
computed. It is obvious that the quality of the map is 
related to the errors in the phases and it is this 
relationship which we study in this work. The interest of 
this analysis is also related to the possibility of 
comparing the power of different direct-methods 
procedures, from tests on known structures, by giving 
the value of the mean phase error or the root- 
mean-square deviation of the phases. 

Phase errors and resolution 

Parthasarathy (1978), assuming a normal distribution 
for the errors of the atomic positions, has calculated the 
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average of the absolute value of the phase errors, 
( IA~I ) ,  as a function of the average of the absolute 
value of the coordinate errors, ( IAr l ) ,  for different 
resolutions. An analysis of Fig. 15 shows that, at a 
given value of ( IAr l ) ,  the phase error is high at high 
resolution and low at low resolution. For instance, we 
can see that for ( IAr l )  = 0 . 4 , ~  the corresoonding 
phase error is 70 ° at a resolution or 0.77 A, while it is 
13 ° at R = 5/t,. 

From Fig. 1 we have graphically derived Fig. 2 
which within the error of the graphical derivation shows 
a linear trend of (IArl)  as a function of the resolution 
for different values of (IAtpl). The extrapolation of 
these lines to R = 0 indicates that, when assuming a 
normal distribution for Ar, with an infinite set of data 
the structure is exactly defined even when the average 
phase error is very close to 90 ° ((IA~pl) = 90 ° 
corresponds to completely random phases). 

From these observations we can infer that it is more 
important to consider not only the overall average 
phase error but also the distribution of the error as a 
function of the resolution. In fact, as far as the 
consequences on the accuracy of the atomic positions is 
concerned, a set of phases with relatively high overall 
(IA~pl), due to large errors in the high-angle reflexions, 
will be preferable to the same set of reflexions with 
smaller (IA~pl) but with large errors in the low-angle 
reflexions. 

In order to verify this hypothesis we have performed 
some tests on the known structure of a photolysis 
product (Karle, Karle & Estlin, 1967) (KARLE:  
P21 2~ 21, 17 atoms in the asymmetric unit). Using a 
routine which generates random numbers with a normal 

Fig. 1 is a reproduction of Fig. 3(a) of the paper by 
Parthasarathy (1978) with a modified notation. 
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distribution, with a given a and average equal to zero, 
we have generated phase errors to apply to the correct 
phases.* The reflexions were divided into n equally 
populated shells of reciprocal space with increasing 
resolution and the errors were generated in three 
different ways :  

(i) the a was increased from one shell to the other 
and the linear increase was defined by giving the values 
for o(1) and a(n/2); 

(ii) the o was constant  for all shells: 
(iii) the a was decreased and the linear decrement  

was defined by giving the values for o (n /2 )  and a(n).  
For  the special reflexions the phase error was set to 

0 ° when the computed error was less than 90 ° and set 
to 180 ° when the error was greater than 90 ° 

In Fig. 3 the distributions of the actual r.m.s.d. 's of  
the phases as a function of the shell number  (i.e. t h e  
resolution) are shown for the following phase-error  
distr ibutions:  

(i) a(1)  = 10 °, a(n/2) --- 75 ° (curve A -  - A -  - A ,  
incr.); 

(ii) a (cons tan t )  = 75 ° (curve _-- --- I ,  
const.); 

(iii) a(n) = 10 °, a(n/2) = 75 ° (curve O . . . .  O . . . .  O, 
decr.). 

* In fact a normal distribution is not the correct distribution to 
deal with cyclic variables (see Giacovazzo, 1979); nevertheless it is 
a very simple way for introducing phase errors with o well 
approximating the desired values. On the other hand, we use that 
distribution simply as a way to generate errors but we do not 
attempt to analyse the properties of thefmaps for different kinds of 
error distributions. We thank one of the referees for pointing out 
this matter. 
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Fig. 1. Average phase error, (IA(oI), as a function of the 
positional error (lArl) for different fixed values of the resolution 
R. (Derived from Parthasarathy, 1978, Fig. 3a.) 

In each case an E map was calculated with the FFT 
program of  M U L T A N  (Main,  Lessinger,  Woolfson,  
Germain  & Declercq,  1977). The map was interpreted 
by the SEARCH routine and finally the positions of the 
peaks were compared with the known coordinates.  The 
results of  this procedure are summarized in Table 1 for 
the three cases illustrated in Fig. 3 and for four other 
tests. In the first column we indicate the type of distri- 
bution with, in parentheses,  the values of a. The second 
and third columns show the actual overall r.s.m.d, and 
mean phase error. The last part  of  the table shows the 
percentage of peaks with deviation from the correct 
atomic position 1,4r1 < 0.1,  0.2,  0.3,  0.5,  0.75,  1.0 A. 
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Fig. 2. Average positional error (IArl> as a function of the 
resolution R for different fixed values of the average phase error 
(IA(ol). (Derived from Fig. 1). 
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Fig. 3. KARLE. Examples of different random phase-error distri- 
butions as a function of the resolution (expressed as the 
sequential number of the shell into which the reciprocal lattice 
has been subdivided). 
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Table 1. KARLE: analysis of the E maps produced with different types of random phase-error distributions 

% of atoms with IArl < 

Distribution r.m.s.d. (IAcpl) 0.1 0.2 0.3 0.5 0.75 1-0/k 

Const. (75 °) 75.99 ° 53.54 ° 18 64 88 88 94 94 
Incr. (10 °, 75 °) 71.72 47.42 29 88 94 100 100 100 
Decr. ( 10 °. 75 °) 74.98 49.19 35* 82 88 94 94 94 
Const. (95 ° ) 92.03 68.78 6 17 41 53 59 59 
Incr. (20 ° , 95 ° ) 86.83 62.54 12 41 52 88 88 88 
Decr. (20 °, 95 °) 90.07 65.03 6 29 59 59 59 59 
Incr. (30 °, 75 °) 72.49 49.49 29 76 100 100 100 100 
Decr. (30 °. 75 °) 76.35 52.05 24 70 76 82 82 82 

In general the results show that for a set of phases 
with similar r.m.s.d., more atomic positions can be 
found within the various limits of IArl in the case of an 
increasing distribution than in the case of constant and 
decreasing distributions. On the other hand the par- 
ticular result marked * in Table 1 is not really 
surprising. In a first approximation we can say that the 
low-resolution reflexions define the skeleton of the 
structure and the high-resolution reflexions define the 
details to be superposed on it. The case of decreasing 
errors with resolution corresponds to superposing very 
accurate details on a wrong skeleton. Then, if by 
chance details are superposed on highly positive 
regions, some atoms will be found with very accurate 
coordinates. We can conclude by saying that in the case 
of decreasing errors only part of the structure and some 
atoms with very accurate coordinates are likely to be 
found. Conversely, in the case of increasing errors it is 
more likely for a larger part of the structure to be found 
but with less accurate coordinates. But the most striking 
fact emerging from Table 1 is that even with large 
r.m.s.d.'s it is possible to identify most of the structure. 

The phase-error function 

In order to see whether the unexpected results of these 
tests are due to the randomness of the generated errors 
and to have a better understanding of the effects of 
phase errors on E maps, we introduce what we call the 
phase-error function. A structure factor with phase 
error is related to the correct structure factor by 

E(err) = E(corr) exp (2niA~o), (1) 

where Acp is the phase error. By applying the con- 
volution theorem this relation becomes, in direct space, 

p(err) = p(corr)*f,  (2) 

where f is the phase-error function, that is 

f ( r )  = ~ exp (2niAcph) exp (2nih.r). (3) 
h 

From (2) we can see that if  f has just a peak at the 
origin and a relatively small background level, then 

p(err) ~_ p(corr). On the other hand, if in the f map 
there are one or more peaks relatively high with respect 
to the origin peak, then its convolution with p(corr) will 
produce a superposition of displaced structures and the 
resulting map will not be interpretable. The phase-error 
function provides a means for characterizing a kind of 
phase error that will lead to uninterpretable maps: they 
must produce one or more large non-origin peaks in the 
f map. It is evident from (3) that this happens when the 
phase errors for a subset of reflexions are of the form 
A¢ = - h .  t. In this case the peak in the f map will be at 
t. 

The above considerations can explain why direct- 
methods procedures produce at times sets of phases 
leading to the correct structure (or a fragment of it) 
with correct orientation but in a wrong position. The 
error in the phases in this case are systematic in the 
sense explained and they produce in the f map a peak 
at t, which corresponds to a displacement from the 
correct position. 

It is also clear why, with phases affected by normally 
distributed errors, we can see most of the structure even 
with large values of (IA~pl); i.e. such phase errors will 
not, in general, produce large non-origin peaks. As 
shown by the examples reported in the next paragraph, 
the effect of increasing the overall (Id~ol) is just to 
reduce the height of the origin peak in relation to the 
background. Because the data are finite, when (IA~pl) 
becomes very large some secondary peaks appear in the 
f map even with errors normally distributed. In the 
ideal case of an infinite set of data we would expect to 
have just a peak at the origin for any value of (IAcpl) 
< 90 ° and this would explain the behaviour of the lines 
in Fig. 2 when extrapolated to R = 0. Some other 
theoretical studies of the properties of the phase-error 
function are in progress. 

Examples 

In order to verify these ideas we have performed some 
further tests on two known structures: 3-chloro-l,3,4- 
triphenyl-2-azetidinone (Colens, Declerq, Germain, 
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Putzeys & Van Meerssche, 1974) (AZET: 
C2IH~6CINO, Pca2~, 48 atoms in the asymmetric unit) 
and ergocalciferol (Hull, Leban, Main, White & 
Woolfson, 1976) (ERGO: C2sHa40, P2~212 l, 58 
atoms in the asymmetric unit). The results obtained 
with normally distributed phase errors are summarized 
in Tables 2 and 3. For each set of phases both an E 
map and an f map were computed. The figures 
reported in the first half of each table refer to the 
structural information in the E map: their meaning has 
already been explained with reference to Table 1. 

The f map is analysed by a peak searching routine 
which produces a list of peaks, with their fractional 
coordinates, in decreasing order of height. In the second 
half of Tables 2 and 3 the most important features of 
the f map are summarized for each type of phase-error 
distribution. For the first five peaks and peaks no. 10, 
20, 40 and 60 (this is an arbitrary but convenient way 
of sampling the peaks in order to represent the trend of 
their heights), we quote the height and in the last 
column we include the background level for reference. 
The figure given below the height for the first four peaks 
is the distance from the origin. Finally in the column of 
peak 2 we show also the ratio of peak 2 to peak 1 as a 
percentage. 

An analysis of Tables 2 and 3 shows that: 

(a) The highest peak is in all cases very close to the 
origin. 

(b) The background level is almost constant and the 
heights of peaks 10 to 60 show a rapid trend towards 
the background level. 

(c) The height of peak 1 decreases as (IA~01) 
increases and at the same time the ratio of peak 2 to 
peak 1 increases. 

(d) When comparing different types of phase-error 
distributions with the same (IA(01) we notice that peak 
I remains almost constant, but in the case of a 

decreasing distribution the height of the secondary 
peaks is considerably increased. 

(e) As in the case of KARLE the increasing 
distributions lead to a greater number of atomic peaks. 
On the other hand we notice that for the decreasing 
distributions peak 1 of the f map is closer to the origin. 
This can be explained considering that, as was 
discussed earlier, correctly phased high-resolution 
reflexions give more accurate positions; the structural 
information is masked by the appearance of relatively 
high secondary peaks. 

Finally we have analysed for ERGO three phase sets 
produced by MULTAN, and these results are shown in 
Table 4 with the layout of Tables 2 and 3. Set 7 
corresponds to the best solution from a starting set built 
with the origin and enantiomorph-fixing reflexions, two 
known phases and three other general reflexions. The 
starting set for solutions 1 and 4 was obtained from a 
steepest-descent refinement (of linear equations) of 
random starting phases (Wright & Woolfson, 1979). In 
Fig. 4 we give the distributions of the phase errors as a 
function of the resolution. We observe that in general 
the large errors are concentrated both at high and low 
resolution. 

We can see that as a consequence of the reduced 
number of terms used the background level is relatively 
high and the decrease in peak height is less rapid, 
producing a greater number of secondary peaks. 

Sets 1 and 7 produce interpretable E maps and as 
expected peak 1 of the f map is predominant. The 
relatively high secondary peaks only partially disturb 
the structural information. Set 4, with the largest 
r.m.s.d., does not produce an interpretable map. In Fig. 
4 we can see that for this set the large errors extend 
from low to medium resolution. Peak 1 of the f map is 
small and the ratios of secondary peaks to peak 1 vary 
from 86 to 59%. 

Table 2. AZET: analysis of the E maps and of  the phase-error maps obtained with different types of  random 
phase-error distributions 

E map ./"map 

% a t o m s  with IArl < 
r.m.s.d. Background 

Distribution (IA~01) 0.1 0.2 0.3 0.5 0.75 1 .0A 1 2 3 4 5 10 20 40 60 level 

Const. (45) 43.81 69 98 100 100 100 100 1198 297 256 217 174 132 116 102 97 i - 100  
32.14 0.10 1.54 1-53 1.57 / 80 

25 % 
Const. (60) 59.47 25 83 98 100 100 100 948 272 259 212 205 158 140 122 113 I - 1 2 5  

43.62 0-11 1.50 1.31 1-80 1 100 
29% 

Const. (80) 79.02 23 39 50 56 65 65 570 184 176 169 167 156 146 135 127 / - 130 
60.41 0.10 1.60 2.36 1.52 ~ I I0  

32% 
Incr. (10, 80) 77-48 13 29 43 75 91 91 632 163 150 147 147 143 139 128 114 I 120 

56-08 0.15 8.26 2.58 2.08 1 I I0  
26% 

Decr. (10, 80) 80.23 25 60 68 68 68 68 667 405 369 218 211 168 153 134 118 I 130 
58.55 0.07 1.28 1.23 1.48 I I I0  

60% 

Peak numbers (height & distance from 0) 



A. M. SILVA A N D  D. VITERBO 1069 

Table 3. ERGO: analysis of the E maps and of the f maps obtained with different types of random phase-error 
distributions 

E map f m a p  

Peak numbers (height & distance from 0) % atoms  with LAcprl < 
r.m.s.d. Background 

Distribution ( I h ~ l )  0.1 0.2 0.3 0.5 0.75 1.0./~ 1 2 3 4 5 10 20 40 60 level 

Const. (45) 43.06 67 95 100 100 100 100 1378 333 303 259 228 168 112 93 87 / - 8 5  
27.80 0.12 1.44 1.51 1.48 / 90 

24% 
Const. (60) 62.15 50 86 98 100 100 100 1087 241 239 222 194 145 121 111 102 / -100 

41.74 0.13 1-48 1.49 1.52 ~ 100 
22% 

Const. (80) 79.80 27 65 79 88 88 88 690 212 201 201 189 144 134 121 114 t - 1 1 5  
56.64 0.13 1.37 1-60 1.35 / 110 

31% 
Incr. (20, 90) 85.70 5 27 57 86 91 96 608 167 158 156 144 133 124 117 110 1 - 1 1 5  

60.82 0.18 1.48 2.44 3.75 ~ 115 
27% 

Decr. (20, 90) 88.23 17 53 66 69 69 69 585 386 358 198 178 154 131 119 114 t - 1 1 0  
63.03 0.08 1.35 1.36 1.49 [ 100 

66% 

Table 4. ERGO: Analysis of the E maps and of the f maps obtained using three sets of phases generated by 
MUL TAN 

E map f m a p  

% atoms  with IA¢ri < 
r.m.s.d. Background 

MULTAN set ( IA~pl ) 0. I 0.2 0.3 0.5 0.75 1.0 A 1 2 3 4 5 10 20 40 60 level 

Set 1 53.90 ° 14 55 66 75 81 82 1363 559 530 518 484 441 410 377 357 I --250 
30.55 0.12 1.40 4.48 1 250 

41% 
Set 7 56.47 8 50 72 75 80 81 1311 572 540 507 482 434 412 386 360 t - 2 5 0  

33.71 0.12 8.18 11.9 t 250 
44% 

Set 4 83.03 0 9 29 38 46 56 626 539 524 508 505 475 420 394 369 [ - 2 5 0  
56.98 0.12 1.60 5.25 ~ 250 

86% 

Peak numbers (height & distance from 0) 
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Fig.  4. E R G O .  Phase-error distributions o f  three sets o f  phases  
generated b y  M U L T A N .  

Conclusions 

The analysis that we have carried out has revealed 
some features of  the relationship between phase errors 
and structural information in an E map. In particular, 
the effect of  systematic errors in making the E maps 
less interpretable seems of great importance. Thus, it is 
less serious to have relatively large random errors than 
to have smaller but systematic errors. Also, the effect of  
the phase-error distribution as a function of  the 
resolution indicates that we should be very careful in 
accurately phasing the low-resolution reflexions. 
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encouragement to carry out the present work. We also 
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Abstract 

Discrepancies exist in the local atomic arrangements 
determined from diffuse X-ray and electron scattering. The 
possible reasons for this are examined. 

In VOx(0.8 < x < 1.3) there are large numbers of both anion 
and cation vacancies and interstitial cations. The con- 
centrations of these vary with composition, x. The presence 
of (composition-dependent) diffuse scattering indicates that 
these defects are not randomly arranged. The purpose of this 
communication is to compare our results on the defect 
arrangement in VO x (Morinaga & Cohen, 1979a,b) from 
studies of diffuse X-ray scattering with those deduced by 
Andersson and co-workers from their pioneering attempt to 
analyze quantitatively diffuse electron scattering (Andersson, 
Gj6nnes & Taft6, 1974; Andersson, Gj6nnes & Forouh, 
1978; Anderson, 1979). 

This comparison is presented in Table 1. While there are 
similarities there are also serious differences. Besides com- 
plex dynamical effects in electron diffraction, the problem in 
estimating background scattering makes it difficult to obtain 
quantitative information on local order, because a weak 
modulation of diffuse intensity in reciprocal space cannot be 
measured accurately. An advantage of the X-ray method is 
that this kind of problem can be treated with measurements 
of diffuse intensities in absolute units so that all sources of 

0567- 7394/80/061070-02501.00 

the scattering can in principle be found. Other origins for the 
discrepancies that appear in Table 1 may be due to the 
regression method used for the analysis of diffuse electron 
scattering. This method is quite sensitive to the choice of 
fitting parameters and fitting regions in reciprocal space 
(Morinaga, 1978). Least-squares fitting using a limited 
number of parameters and restricted regions of reciprocal 
space sometimes yields erroneous or unstable results. 
Andersson and co-workers (Andersson et al., 1978; Anders- 
son, 1979) analyzed data on a few reciprocal planes with a 
small number of parameters. In addition, an electron 
microscope with an accelerating voltage of 1 MeV was 
employed. A wide range of reciprocal space can be measured 
with such an instrument, and the diffuse scattering at the 
highest scattering angles was used by Andersson et al. to 
detect the static and dynamic displacements of ions. But the 
contribution of higher-order displacements to the measured 
intensity is appreciable in this region. This results in 
problems in estimating the first- and second-order displace- 
ment coefficients in the presence of these (ignored) higher- 
order terms. Thus, there are several difficulties to be resolved 
in quantitative studies of diffuse electron scattering. On the 
other hand, the X-ray method averages over a much larger 
volume of sample than the electron method; anisotropic local 
structures can be lost in this averaging. Furthermore, there 
could be local differences in composition, and hence in the 
atomic arrangements, which are best examined with electron 
scattering. Furthermore, the X-ray method is not nearly as 
rapid as the electron method. But at this time it is more 

© 1980 International Union of Crystallography 


